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Use of abbreviations and acronyms is pervasive in 
clinical reports despite many efforts to limit the use 
of ambiguous and unsanctioned abbreviations and 
acronyms. Due to the fact that many abbreviations 
and acronyms are ambiguous with respect to their 
sense, complete and accurate text analysis is 
impossible without identification of the sense that 
was intended for a given abbreviation or acronym. 
We present the results of an experiment where we 
used the contexts harvested from the Internet 
through Google API to collect contextual data for a 
set of 8 acronyms found in clinical notes at the 
Mayo Clinic. We then used the contexts to 
disambiguate the sense of abbreviations in a 
manually annotated corpus.  

INTRODUCTION 

Many abbreviations and acronymsi  are ambiguous 
with respect to their sense and constitute a  
significant part of the general problem of text 
normalization. Acronyms are used routinely 
throughout clinical texts and knowing their sense is 
critical to the understanding of the document 
whether we talk about automatic natural language 
understanding or simply human comprehension and 
interpretation. The acronym ambiguity is a growing 
problem both in the number of new acronyms and 
the number of new senses for existing acronyms. 
For example, according to the UMLS 2001AB 1, 
RA had the following 8 senses: “rheumatoid 
arthritis”, “renal artery”, “right atrium”, “right 
atrial”, “refractory anemia”, “radioactive”, “right 
aram”, “rheumatic arthritis.”  The 2005AA version 
of the UMLS contains 17 additional senses: 
“ragweed antigen”, “refractory ascites”, “renin 
activity”, to name only a few. This is just an 
indication of the rate at which the ambiguity is 
proliferating. Liu et al.2 show that 33% of 
acronyms listed in the UMLS in 2001 are 
ambiguous. In a later study, Liu et al.3 
demonstrated that 81% of acronyms found in 
MEDLINE abstracts are ambiguous and have on 
average 16 senses. In addition to problems with 
text interpretation, Friedman, et al. 4 also point out 
that acronyms constitute a major source of errors in 
a system that automatically generates lexicons for 

                                                      
i To save space and for ease of presentation, we will use the 
word “acronym” to mean both “abbreviation” and “acronym” 
since the two could be used interchangeably for the purposes 
described in this paper 

medical Natural Language Processing (NLP)  
applications. 

Ideally, when looking for documents containing 
“rheumatoid arthritis”, we want to retrieve 
everything that has a mention of RA in the sense of 
“rheumatoid arthritis” but not those documents 
where RA means “right atrial.” Acronym 
disambiguation problem is a special case of the 
word sense disambiguation (WSD) problem. 
Approaches to WSD include supervised machine 
learning techniques, where some amount of 
training data is marked up by hand and is used to 
train a decision tree classifier5. On the other side of 
the spectrum, the fully unsupervised learning 
methods such as clustering have been also 
successfully used6. A hybrid class of machine 
learning techniques for WSD relies on a small set 
of hand labeled data used to bootstrap a larger 
corpus of training data7,8. The cornerstone of all 
machine learning techniques for WSD is the 
context9 as this is also true for acronym 
disambiguation. 

One way to take context into account is to 
consider the type of discourse in which the 
acronym occurs. If we see RA in a cardiology 
report, then it can be normalized to “right atrial”, 
else if it occurs in the context of a rheumatology 
note, it is likely to mean “rheumatoid arthritis.” 
This method of using global context to resolve the 
acronym ambiguity suffers from at least three 
major drawbacks. First of all, it requires a database 
of acronyms and their expansions linked with 
possible contexts in which particular expansions 
can be used. Second, it requires a rule-based 
system for assigning correct expansions. Third, the 
distinctions made between various senses are 
bound to be very coarse. We may be able to 
distinguish correctly between “rheumatoid 
arthritis” and “right atrial” since the two are likely 
to occur in clearly separable contexts; however, 
distinguishing between “rheumatoid arthritis” and 
“right arm” becomes more of a challenge and may 
require introducing additional rules to further 
complicate the system.  

Pakhomov10 introduced a method for collecting 
training data for supervised machine learning 
approaches to disambiguating acronyms. The 
method is based on the assumption that the 
expansion (or the sense) of an acronym and the 
acronym itself tend to occur in similar contexts. For 
example, we would expect one to use the 
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expressions “rheumatoid arthritis” and “RA” in the 
sense of rheumatoid arthritis under similar 
contextual conditions. Clinical reports were used to 
find the expressions that defined the senses of 
ambiguous acronyms. Once the expression was 
identified in the corpus, its surrounding context 
was recorded and subsequently used for training 
statistical predictive models for disambiguating 
acronyms. That work had two main limitations. 
One had to do with the fact that there was no hand 
labeled corpus to evaluate the method. The 
evaluation was done using a cross-validation on the 
training data. The second limitation was that the 
method assumed the availability of large numbers 
of clinical reports. Due to patient confidentiality 
restrictions such reports cannot be shared and are 
available only to a few researchers. In this paper 
we build upon this method and extend it to include 
contextual data derived from a widely and publicly 
available resource – the Internet. One of the main 
goals of the work described in this paper is to 
explore the use of the Internet as a source of 
training data for acronym disambiguation.  

In the rest of the paper, we will introduce some 
of the previous work on medical acronym 
disambiguation techniques. We will then give a 
detailed description of the manually annotated 
corpus of acronym data we are using for this 
project. We will also describe the technique we are 
proposing and present and discuss the evaluation 
results.  

BACKGROUND 

There have been many proposals in the medical 
informatics literature for solutions to the acronym 
disambiguation problem. The bulk of previous 
work is focused primarily on supervised machine 
learning approaches where a corpus of text is 
annotated for acronyms and their sense is manually 
disambiguated. The disambiguation is typically 
cast as a classification problem where the manually 
annotated corpus is used for training and evaluation 
of statistical classifiers. A notable exception to 
these approaches is the work by Liu11 who uses 
domain knowledge in the form of hierarchical 
relations between the parents and siblings of the 
various senses for a given acronym. The intended 
sense is determined by matching the terms found in 
the context of the acronym that is being 
disambiguated to the terms that instantiate the 
parents and siblings of the term that represents the 
intended sense. For example, if the acronym “RA” 
only had two senses “rheumatoid arthritis” and 
“renal artery”, then according to Liu’s method, we 
would find all the entry terms representing the 
siblings and parents of “rheumatoid arthritis” as 
well as all the entry terms representing parents and 
siblings of “renal artery.” If the first set of terms 
has a greater number of matches to the terms found 
in the context of “RA”, then “rheumatoid arthritis” 

is selected as the intended sense, otherwise – “renal 
artery.”  

MATERIALS AND METHODS 

Acronyms in Clinical Discourse 
By clinical discourse in this paper we mean the text 
found in the clinical notes repository at the Mayo 
Clinic. This repository represents a record of 
patient-physician encounters at the Mayo Clinic 
since 1994 and contains approximately 16 million 
documents. In order to address the problem of 
acronym ambiguity, we selected a random sample 
of clinical notes from a subset of ~1.7 million notes 
recorded in 2002. We only selected the notes where 
one or more of the following 8 acronyms occurred: 
AC, ACA, APC, CF, HA, LA, NSR and PE. These 
acronyms were selected pseudo-randomly from the 
Mayo Clinic’s formulary of abbreviations and 
acronymsii. We arbitrarily selected only those 
acronyms that had more than 2 senses and 
represented 1, 2 and 3 letter combinations. Table 1 
summarizes the sizes of corpora collected for each 
acronym.  
 
 AC ACA APC CF HA LA NSR PE 
N 553 554 378 730 514 492 408 685 
Table 1. Sample sizes for 8 acronyms (N = number of sample 
feature vectors). 
 

It shows the number of individual instances of 
the acronyms found and the number of notes in 
which these instances were found. A more 
comprehensive description of the clinical notes 
data can be found in a previous work by 
Pakhomov10. The identification of acronyms in the 
corpus was done automatically by using simple 
regular expression matching. Thus each of the 8 
acronyms was represented by a corpus of clinical 
notes marked up with XML tags and presented to 
human experts for annotation through the 
Generalized Architecture for Text Engineering 
(GATE 3.0)iii interface. The manual annotation of 
the acronyms for their sense was done by 
consensus between three human experts who had 
substantial amount of experience in medical 
indexing and retrieval. Two of the experts had over 
12 years and one had 3 years of experience. 

Subsequent to the annotation, we analyzed the 
distribution of different senses. The distribution 
happens to be highly skewed towards a single sense 
for four of the 8 acronyms: ACA, HA, LA and 
NSR. Table 2 shows the predominant senses for 
each of the 8 acronyms. The boldfaced acronyms 
have a single predominant sense where no other 
sense has more than 10% representation. For the 
other 4 acronyms the sense distribution is also 
                                                      
ii Currently, the Mayo Clinic is in the process of restricting the 
use of certain acronyms and abbreviations as part of the patient 
safety regulations. 
iii http://gate.ac.uk/ 
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skewed; however, the majority of the instances 
include at least two senses. CF is a borderline case 
with only 14% of the sense inventory represented 
by ‘cold formula’ and the rest of the space taken up 
by ‘cystic fibrosis.’ 
 

 N senses Predominant senses 
AC 13 ‘acid controller’ (22%), 

‘acromyoclavicular’ (30%), 
‘antitussive with codeine’ (29%) 

ACA 6 ‘adenocarcinoma’ (85%) 
APC 10 ‘activated protein C’ (12%) 

‘adenomatous polyposis coli’ (25%) 
‘argon plasma coagulation’ (42%) 

CF 9 ‘cold formula’ (14%) 
‘cystic fibrosis’ (72%) 

HA 5 ‘headache’ (92%) 
LA 8 ‘long acting’ (79%) 
NSR 2 ‘normal sinus rhythm’ (99%) 
PE 11 ‘pressure equalizing’ (32%) 

‘pulmonary embolism’ (48%) 
Table 2. Partial sense inventory for the 8 acronyms. Only 
predominant senses are listed. 
 
We have also compared the sense inventories 
derived empirically from the manually annotated 
corpus to those provided by the Mayo Clinic’s 
approved senses and the senses listed in the UMLS 
2005AA LRABR table for each of the 8 acronyms. 
The findings of the comparison are summarized in 
Table 3. 
  

 Number of Senses Mayo Clinic 
source 

UMLS 
source 

 U M C over extra over extra 
AC 48 3 13 1 12 6 7 
ACA 1 3 6 1 6 0 6 
APC 2 2 10 0 10 0 10 
CF 2 11 9 4 6 1 8 
HA 26 3 5 3 2 4 1 
LA 1 4 8 3 5 0 8 
NSR 0 2 2 2 2 0 2 
PE 36 3 11 3 8 5 6 
Totals 116 31 64 17  51 16 48 

Table 3. Quantitative comparison of sense inventories. (U 
stands for ‘N UMLS senses”, M – ‘N Mayo  approved 
senses’, C – ‘N Mayo corpus/empirical senses.’ The values in 
the ‘over’ columns indicate the number of overlapping 
senses and the values in the ‘extra’ columns show the 
number of senses missing from the source inventory.) 
 
These results show that only 26% (17/64) of the 
empirically found senses for the 8 acronyms 
overlap with those provided by the Mayo Clinic list 
of approved acronyms and their senses. About the 
same number 25% (16/64) represents the overlap in 
sense inventories between the empirically found 
senses and those provided by the UMLS 2005AA. 
These observations indicate that established 
sources of acronyms and abbreviations may not be 
entirely suitable as sources of sense inventories for 
acronyms in clinical notes.  
      
Experiments 
We have experimented with two approaches to 
acronym sense disambiguation: fully supervised 

and semi-supervised. The latter is the focal point of 
this paper and the former was used to establish an 
upper bound for subsequent experimentation. The 
main difference between these two approaches is in 
how training data is collected. For the fully 
supervised approach, both the training and the 
testing data are manually annotated. The data 
collection for the semi-supervised approach is 
automated but only for the training data. The 
evaluation is still performed on manually annotated 
data. We describe the two approaches in the 
following two subsections in further detail.  
 
Fully-supervised Approach 
The fully supervised approaches were used here in 
order to establish the upper bound for subsequent 
evaluation of the semi-supervised learning. For the 
fully supervised approach we used two well 
established machine learning algorithms, 
Maximum Entropy and C5.0 Decision Trees. We 
used words that occur in the same sentence as the 
acronym as a set of features for both algorithms. 
This technique is also known as the ‘bag-of-words’ 
approach. At this stage, no feature selection was 
performed on the manually tagged acronym 
samples apart from the standard exclusion of stop 
words. C5.0 algorithm uses information gain in 
order to select relevant attributes to split on. 
Maximum Entropy determines the relevant features 
through a Generalized Iterative Scaling (GIS) 
procedure. For more detailed information on these 
algorithms, see Manning and Shutze (2000). 
 
Semi-supervised approach 
The semi-supervised approach is the main 
contribution of this paper and consists of the 
following steps: 

Step 1: Sense Inventory.  We developed a 
sense inventory for each acronym. In this step, we 
used the empirical sense inventory derived from the 
manually annotated samples. 

Step 2: Data Collection For each sense of 
each acronym, we collected the ‘contexts’ from 
corpora of textual data by finding exact matches in 
the corpus of the entire character sequence that 
represented the sense and recording the 
surrounding lexical items within a specified 
horizon. For our experiments, we selected the 
following three corpora: 
 
1. Unrestricted World Wide Web (Web) 
2. Medline abstracts (Med) 
3. Mayo Clinic corpus of 1.7M notes (Mayo) 
 
The first two corpora were accessed and 
manipulated via the Google Java API. For example, 
in order to collect samples for ‘cystic fibrosis’ from 
unrestricted WWW space, we would make a simple 
call to the Google API and collect the words 
contained in the ‘snippets’ and the titles of the 
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pages returned by the API for the first 100 hits. In 
order to collect samples from Medline abstracts, we 
restricted the search space through the API to the 
‘ncbi.nlm.nih.gov’ domain. If a sense produced no 
hits in the restricted space, the search was opened 
up to the general web. The third corpus was 
accessed via a Perl script that scanned the text of 
clinical notes and harvested ‘bags-of-words’ in the 
+-20 word vicinity of the detected string 
representing the sense of an acronym. Crossing of 
sentential boundaries was permitted. This step 
resulted in three sets of training samples for each 
acronym: Web (general), Med (medline) and Mayo 
(clinical corpus). 

Step 3: Data merging. In this step, we 
created additional sets by merging the data 
generated in the previous step, which resulted in 
two additional sets: Mayo+Web and Mayo+Med. 
The merging alleviated the problem where the data 
gathered from the clinical notes was missing 
contexts for some of the senses of an acronym 
because the character strings representing the 
senses were not detected anywhere in the corpus. 
The merging compensated for the missing data. 

Step 4: Context vectors generation. Each 
training sample was represented as a context vector 
of lexical items and their frequency. Each test 
sample was represented in the same way.  
 
We experimented with two ways of using the 
automatically generated training data. One was to 
use a standard technique such as the C5.0 Decision 
Trees and the other was to use the cosine between 
the training and the test vectors as a measure of 
their similarity. A method similar to the latter 
technique has been used successfully by Pedersen 
et al. 12 for determining semantic similarity 
between concepts. Their approach consisted of 
generating context vectors for each concept by 
averaging the vectors representing the words that 
make up the definition of the concept.  We use a 
simplified version of this technique where we 
normalize the training and the testing vectors that 
represent the various senses of a given acronym 
and then compute the cosine between all training 
vectors for a given acronym and the test vectors. 
The training vector with the largest cosine is 
selected to represent the sense of the acronym 
represented by the test sample.  

RESULTS AND DISCUSSION 

Evaluation of all methods was performed using the 
standard accuracy measure where accuracy is 
computed as the ratio of correctly disambiguated 
test samples to the total number of test samples. 

First, we established three benchmarks. The 
first benchmark was established by taking the ratio 
between the most frequent sense for a given 
acronym found in the test data to the total number 
of test samples. Since the data is highly skewed for 

some of the acronyms, we would expect to see a 
fairly high benchmark with this approach. The 
other two benchmarks were established by doing a 
10-fold cross-validation test on the test data with 
two standard machine learning algorithms: C5.0 
Decision Tree and Maximum Entropy classifiers. 
Table 4 contains the benchmark accuracies. 
 

 Accuracy (%) 
 Majority 

Sense 
C5.0 Max 

Ent 
AC 31.40 94.60 96.70 
ACA 87.40 93.10 97.00 
APC 42.30 90.70 95.90 
CF 76.30 95.80 94.20 
HA 92.30 94.70 95.80 
LA 88.50 92.60 94.60 
NSR 99.00 98.80 99.00 
PE 48.30 90.80 93.30 
Mean (all) 70.70 93.90 95.80 
Mean (bal) 49.60 92.90 95.40 
Mean stdev. (X-validation)  0.96 2.97 

Table 4. Benchmark accuracies (two means are reported – 
‘all’ across all acronyms and ‘bal’ only across acronyms 
with more or less balanced distribution) 
 

The results in Table 4 show that even a 
straightforward ‘bag-of-words’ approach to 
disambiguation of acronyms gets fairly good 
results where the training data is manually 
annotated.  
 
Acr. Base Web Med Mayo Mayo 

Med 
Mayo 
Web     

AC 0.2 92.4 91.1 38.4 81.9 82.7 
ACA 87.4 62.2 72.2 89.1 89.3 89.6 
APC 12.5 46.0 36.2 76.9 64.9 56.1 
CF 0.1 55.2 56.9 67.6 80.6 80.3 
HA 92.3 50 22.4 71.1 74.3 74.1 
LA 0.2 31.3 9.4 6.2 8.9 13.1 
NSR 99.0 99.0 99.0 85.7 85.7 85.7 
PE 4.4 61.2 47.0 59.5 57.2 58.4 
Mean 
(all) 

  
37 62.2 54.3 61.8 67.8 67.5 

Mean 
(bal) 

  
4.0 63.7 57.8 60.6 71.1 69.4 

Table 5. Experimental % accuracy results with 5 sources of 
data (bold indicates highly skewed distribution, two means 
are reported – ‘all’ across all acronyms and ‘bal’ only across 
acronyms with more or less balanced distribution). 
 

Except for NSR, in all other cases both C5.0 
and Maximum Entropy outperform the “most 
frequent” approach. NSR is so highly skewed (only 
3 out of 405 samples are different from the rest) 
that it is unlikely that any algorithm will be able to 
‘beat’ the “most frequent” approach. 

Table 5 contains the results of experimenting 
with collecting training data from various sources: 
WWW, MEDLINE, MAYO, MAYO+WWW and 
MAYO+MEDLINE. The results in Table 5 indicate 
that a combination of the data derived from clinical 
notes and MEDLINE (Mayo+Med) generates the 
best accuracy with the context vector matching 
approach. The baseline accuracy numbers were 
derived by taking the most frequent sense in the 
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Mayo+Med training data as the suggestion for each 
test sample. 

The majority sense in the training data 
happened to coincide with the majority sense in the 
test data for ACA (adenocarcinoma), HA 
(headache) and NSR (normal sinus rhythm). This 
fact, coupled with the skewness of sense 
distribution, resulted in a very high baseline for 
these 3 acronyms. For the rest of the acronyms, the 
skewness of the data had the opposite effect 
resulting in very low baselines. LA presents an 
interesting case. The majority sense in the 
Mayo+Med training data is ‘left arm’ while the 
predominant majority sense in the test data is ‘long 
acting.’ The fact that the Web-only approach 
(31.3%) outperforms all others is probably due to 
the fact that only the data used to generate vectors 
for this approach contained the sense ‘long acting.’ 
 
Acr. Context Vectors Max Ent 
AC 81.85 41.25 
ACA 89.25 88.88 
APC 64.89 63.56 
CF 80.6 70.08 
HA 74.26 91.35 
LA 8.85 3.2 
NSR 85.67 98.76 
PE 57.22 40.07 
Mean (all) 67.82 62.1438 
Mean(bal) 71.14 53.74 
Table 5. Experimental % accuracy results comparing the 
performance of context vectors and maximum entropy (two 
means are reported – ‘all’ across all acronyms and ‘bal’ only 
across acronyms with more or less balanced distribution). 
 
We also compared the context vector matching 
method for disambiguating acronyms with a 
standard maximum entropy based classifier. We 
trained maximum entropy classifiers using 
MAYO+MED samples for all 8 acronyms. The test 
results are presented in Table 6 and indicate a 
substantial advantage of the context vectors over 
maximum entropy particularly where the meanings 
of acronyms have a distribution balanced at least 
between 2 meanings.  

This study has a number of limitations. 
Currently, we do not control for the fact that 
MEDLINE abstracts typically have acronyms 
defined upon their first appearance in text while 
clinical notes and general WWW derived acronyms 
are not likely to be defined anywhere in the text. 
Another obvious limitation is that we have a 
relatively small set of testable acronyms whose 
sense inventory distribution is highly skewed. We 
intend to address these limitations in future work 
by developing a more principled approach to 
selecting the acronyms and the raw data used to 
generate training samples.  

CONCLUSION 

This paper presents preliminary results suggesting 
that using the WWW in conjunction with clinical 
corpora can be used for generating training data for 

acronym disambiguation. These results are 
encouraging as they suggest that there is a potential 
in leveraging very large amounts of publicly 
available data for disambiguating acronyms found 
in clinical discourse. The results of this study also 
indicate that a disambiguation method based on the 
vector space model may be more effective in 
conjunction with the proposed data generation 
approach than standard classification methods such 
as maximum entropy.  
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